Search results for "Other Physics Topics"

showing 8 items of 8 documents

High-pressure characterization of multifunctional CrVO4

2020

[EN] The structural stability and physical properties of CrVO(4)under compression were studied by x-ray diffraction, Raman spectroscopy, optical absorption, resistivity measurements, andab initiocalculations up to 10 GPa. High-pressure x-ray diffraction and Raman measurements show that CrVO(4)undergoes a phase transition from the ambient pressure orthorhombic CrVO4-type structure (Cmcm space group, phase III) to the high-pressure monoclinic CrVO4-V phase, which is proposed to be isomorphic to the wolframite structure. Such a phase transition (CrVO4-type -> wolframite), driven by pressure, also was previously observed in indium vanadate. The crystal structure of both phases and the pressure …

-typeoptical absorptionCondensed Matter - Materials Sciencehigh-pressureCrVOOther Physics TopicsHigh-pressureOptical absorption4Settore ING-IND/22 - Scienza e Tecnologia dei MaterialiMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesAnnan fysikCrVO4-typeX-ray diffractionx-ray diffractionRamanspectroscopyphase transitionFISICA APLICADARaman spectroscopyCrVO; 4; -type; high-pressure; optical absorption; phase transition; Raman spectroscopy; X-ray diffractionPhase transition
researchProduct

Comment on “How skew distributions emerge in evolving systems” by Choi M. Y. et al.

2010

Power-law distributions and other skew distributions, observed in various models and real systems, are considered. As an example, critical exponents determined from highly accurate experimental data very close to the λ-transition point in liquid helium are discussed in some detail. A model, describing evolving systems with increasing number of elements, is considered to study the distribution over element sizes. Stationary power-law distributions are found. Certain non-stationary skew distributions are obtained and analyzed, based on exact solutions. Validerad; 2010; 20100908 (weber)

Other Physics TopicsNaturvetenskap - FysikReal systemsSkewGeneral Physics and AstronomyEvolving systemsAnnan fysikNatural sciences - PhysicsStatistical physicsCritical exponentMathematicsEPL (Europhysics Letters)
researchProduct

Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity: A First-Principles Study

2022

| openaire: EC/H2020/838996/EU//RealNanoPlasmon Funding Information: We acknowledge financial support from the Swedish Research Council (VR Miljö, Grant No: 2016-06059), the Knut and Alice Wallenberg Foundation (Grant No: 2019.0140), the Polish National Science Center (projects 2019/34/E/ST3/00359 and 2019/35/B/ST5/02477). T.P.R. acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 838996 and support from the Academy of Finland under the Grant No. 332429. T.J.A. acknowledges support from the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H…

Other Physics TopicsexcitonsAtom and Molecular Physics and OpticstiheysfunktionaaliteoriaCondensed Matter PhysicsAtomic and Molecular Physics and OpticsplasmonicsElectronic Optical and Magnetic Materialstime-dependent density functional theorynanorakenteetfotoniikkaplasmoniikkastrong couplingnanophotonicsElectrical and Electronic EngineeringBiotechnology
researchProduct

Application of thermodynamics to driven systems

2007

Application of thermodynamics to driven systems is discussed. As particular examples, simple traffic flow models are considered. On a microscopic level, traffic flow is described by Bando's optimal velocity model in terms of accelerating and decelerating forces. It allows to introduce kinetic, potential, as well as total energy, which is the internal energy of the car system in view of thermodynamics. The latter is not conserved, although it has certain value in any of two possible stationary states corresponding either to fixed point or to limit cycle in the space of headways and velocities. On a mesoscopic level of description, the size n of car cluster is considered as a stochastic varia…

PhysicsPhysics - Physics and SocietyInternal energyOther Physics TopicsStatistical Mechanics (cond-mat.stat-mech)ThermodynamicsFOS: Physical sciencesDetailed balanceAnnan fysikPhysics and Society (physics.soc-ph)Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsTraffic flow (computer networking)Microscopic traffic flow modelEquilibrium thermodynamicsLimit cycleMaster equationCondensed Matter - Statistical MechanicsStationary state
researchProduct

Correlation analysis of vibration modes in physical vapour deposited Bi 2 Se 3 thin films probed by the Raman mapping technique

2021

In this work, the Raman spectroscopy mapping technique is used for the analysis of mechanical strain in Bi2Se3 thin films of various (3-400 nm) thicknesses synthesized by physical vapour deposition on amorphous quartz and single-layer graphene substrates. The evaluation of strain effects is based on the correlation analysis of in-plane (E2g) and out-of-plane (A21g) Raman mode positions. For Bi2Se3 films deposited on quartz, experimental datapoints are scattered along the line with a slope of similar to 0.85, related to the distribution of hydrostatic strain. In contrast to quartz/Bi2Se3 samples, for graphene/Bi2Se3 heterostructures with the same thicknesses, an additional negative slope of …

Materials scienceOther Physics TopicsPhononBioengineering02 engineering and technologySubstrate (electronics)01 natural scienceslaw.inventionsymbols.namesakelaw0103 physical sciencesOther Materials EngineeringGeneral Materials ScienceThin filmComposite material010306 general physicsQuartzGrapheneGeneral EngineeringGeneral ChemistryCondensed Matter Physics021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsAmorphous solidsymbolsDeformation (engineering)0210 nano-technologyRaman spectroscopyNanoscale Advances
researchProduct

Hot-cavity spectroscopy of dark pulse Kerr combs in microresonators

2019

Kerr frequency combs are generated through cascaded four-wave mixing in high-Q microresonators [1]. These devices are pumped with a continuous-wave laser and modulational instability (MI) is responsible for the growth of the initial comb lines. Since it is easier to satisfy the MI phase matching condition in the anomalous dispersion regime, most studies on Kerr combs have focused on anomalous dispersion microresonators. However, coherent microresonator combs can also take place in the normal dispersion regime. In these combs, phase matching is attained with the aid of the mode coupling between transverse modes of the microresonator [2]. One particularly interesting comb state that operates …

PhysicsOther Electrical Engineering Electronic Engineering Information EngineeringOther Physics Topicsbusiness.industryAtom and Molecular Physics and OpticsNear-infrared spectroscopyResonancePhysics::Optics02 engineering and technologyLaser pumping021001 nanoscience & nanotechnologyLaser01 natural scienceslaw.inventionPulse (physics)010309 opticsModulational instabilityOpticslawModulation0103 physical sciencesDispersion (optics)0210 nano-technologybusiness
researchProduct

Switching Dynamics of Dark Solitons in Kerr Microresonators

2019

Dissipative Kerr solitons (DKS) are localized structures in optical resonators that arise from a double balance between dispersion and Kerr effect, and linear loss and parametric gain [1]. The periodic nature of DKS corresponds to frequency combs. DKS can be generated in high-Q microresonators for diverse applications, from coherent communications to precision frequency synthesis [1]. Most studies of DKS have focused on microresonator cavities operating in the anomalous dispersion regime, where the waveforms correspond to bright soliton pulses. Coherent microresonator combs can also be formed in the normal dispersion regime [2]. The time-domain waveform corresponds to a localized dark-pulse…

PhysicsKerr effectOther Electrical Engineering Electronic Engineering Information EngineeringCondensed matter physicsOther Physics TopicsAtom and Molecular Physics and OpticsDynamics (mechanics)Physics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPulse (physics)010309 opticsResonator0103 physical sciencesDispersion (optics)Dissipative systemWaveformSoliton0210 nano-technologyNonlinear Sciences::Pattern Formation and Solitons
researchProduct

Models for highway traffic and their connections to thermodynamics

2007

Models for highway traffic are studied by numerical simulations. Of special interest is the spontaneous formation of traffic jams. In a thermodynamic system the traffic jam would correspond to the dense phase (liquid) and the free flowing traffic would correspond to the gas phase. Both phases depending on the density of cars can be present at the same time. A model for a single lane circular road has been studied. The model is called the optimal velocity model (OVM) and was developed by Bando, Sugiyama, et al. We propose here a reformulation of the OVM into a description in terms of potential energy functions forming a kind of Hamiltonian for the system. This will however not be a globally …

Physicssymbols.namesakeOther Physics TopicsMonte Carlo methodsymbolsIsing modelAnnan fysikStatistical physicsHamiltonian (quantum mechanics)Potential energyThermodynamic systemGas phase
researchProduct